R 利剑 NoSQL 系列文章,主要介绍通过 R 语言连接使用 nosql 数据库。涉及的 NoSQL 产品,包括 Redis, MongoDB, HBase, Hive, Cassandra, Neo4j。希望通过我的介绍让广大的 R 语言爱好者,有更多的开发选择,做出更多地激动人心的应用。

关于作者:

转载请注明:

/2013/07/r-nosql-cassandra/

rcassandra

第三篇 R 利剑 Cassandra,分为 7 个章节。

  1. Cassandra 介绍
  2. Cassandra 安装
  3. RCassandra 安装
  4. RCassandra 函数库
  5. RCassandra 基本使用操作
  6. RCassandra 使用案例
  7. Cassandra 的没落

每一章节,都会分为 “文字说明部分” 和“代码部分”,保持文字说明与代码的连贯性。

1. Cassandra 介绍

Apache Cassandra 是一套开源分布式 NoSQL 数据库系统。它最初由 Facebook 开发,用于储存收件箱等简单格式数据,集 Google BigTable 的数据模型与 Amazon Dynamo 的完全分布式的架构于一身。Facebook 于 2008 将 Cassandra 开源,此后,由于 Cassandra 良好的可扩放性,被 Digg、Twitter 等知名 Web 2.0 网站所采纳,成为了一种流行的分布式结构化数据存储方案。

Cassandra 的名称来源于希腊神话,是特洛伊的一位悲剧性的女先知的名字,因此项目的 Logo 是一只放光的眼睛。

Cassandra 的数据会写入多个节点,来保证数据的可靠性,在一致性、可用性和网络分区耐受能力(CAP)的折衷问题上,Cassandra 比较灵活,用户在读取时可以指定要求所有副本一致(高一致性)、读到一个副本即可(高可用性)或是通过选举来确认多数副本一致即可(折衷)。这样,Cassandra 可以适用于有节点、网络失效,以及多数据中心的场景。

Cassandra 介绍摘自:维基百科 (http://zh.wikipedia.org/wiki/Cassandra)

2. Cassandra 安装

2.1 文字说明部分:

首先环境准备,这里我选择了 Linux Ubuntu 操作系统 12.04 的 64 位服务器版本,大家可以根据自己的使用习惯选择顺手的 Linux。

JDK 使用 SUN 官方版本 JDK 1.6.0_29,请不要用 Linux 自带的 openjdk。

手动下载并安装 Cassandra。

Cassandra 配置,需要提前初始化几个目录。

  • data_file_directories:为数据文件目录
  • commitlog_directory:为日志文件目录
  • saved_caches_directory:为缓存文件目录

下面将介绍单节点的安装,集群安装请参考:Cassandra 单集群实验 2 个节点

2.2 代码部分:

单节点安装:系统环境 Linux Ubuntu 12.04 LTS 64bit server

~ uname -a
Linux u1 3.5.0-23-generic #35~precise1-Ubuntu SMP Fri Jan 25 17:13:26 UTC 2013 x86_64 x86_64 x86_64 GNU/Linux
    
~ cat /etc/issue
Ubuntu 12.04.2 LTS \n \l

JDK 环境:SUN 官方 JDK 1.6.0_29

~ java -version
   
java version "1.6.0_29"
Java(TM) SE Runtime Environment (build 1.6.0_29-b11)
Java HotSpot(TM) 64-Bit Server VM (build 20.4-b02, mixed mode)

下载 Cassandra 并解压

~ wget http://mirrors.tuna.tsinghua.edu.cn/apache/cassandra/1.2.5/apache-cassandra-1.2.5-bin.tar.gz
    
~ tar xvf apache-cassandra-1.2.5-bin.tar.gz
~ mv apache-cassandra-1.2.5-bin cassandra125
~ mv cassandra125 /home/conan/toolkit/
    
~ pwd
/home/conan/toolkit
    
~ ls -l
drwxrwxr-x  9 conan conan 4096 Jun  1 06:10 cassandra125/
drwxr-xr-x 10 conan conan  4096 Apr 23 14:36 jdk16

初始化 cassandra

~ cd /home/conan/toolkit/cassandra125
    
#配置Cassandra数据文件目录
~ vi conf/cassandra.yaml
    
data_file_directories:
    - /var/lib/cassandra/data
commitlog_directory: /var/lib/cassandra/commitlog
saved_caches_directory: /var/lib/cassandra/saved_caches

目录的介绍:

data_file_directories:为数据文件目录

commitlog_directory:为日志文件目录

saved_caches_directory:为缓存文件目录

确认操作系统中,这几个目录已被创建。

同时确认 / var/log/cassandra / 目录,对于 cassandra 是可写的。

~ sudo mkdir -p /var/lib/cassandra/data
~ sudo mkdir -p /var/lib/cassandra/saved_caches
~ sudo mkdir -p /var/lib/cassandra/commitlog
~ sudo mkdir -p /var/log/cassandra/
    
~ sudo chown -R conan:conan /var/lib/cassandra
~ sudo chown -R conan:conan /var/log/cassandra/
    
~ ll /var/lib/cassandra
drwxr-xr-x  2 conan conan 4096 Jun  1 06:21 commitlog/
drwxr-xr-x  2 conan conan 4096 Jun  1 06:21 data/
drwxr-xr-x  2 conan conan 4096 Jun  1 06:21 saved_caches/

设置环境变量

~ sudo vi /etc/environment
CASSANDRA_HOME=/home/conan/toolkit/cassandra125
    
#让变量生效
~ . /etc/environment
    
#查看环境变量
~ export |grep /home/conan/toolkit/cassandra125
declare -x CASSANDRA_HOME="/home/conan/toolkit/cassandra125"
declare -x OLDPWD="/home/conan/toolkit/cassandra125"
declare -x PWD="/home/conan/toolkit/cassandra125/bin"

启动 cassandra

~ bin/cassandra -f
#注:-f参数是绑定到console,不加-f则是后台启动。
    
~ jps
19971 CassandraDaemon
20440 Jps

打开客户端

~ bin/cassandra-cli
    
Connected to: "Test Cluster" on 127.0.0.1/9160
Welcome to Cassandra CLI version 1.2.5
    
Type 'help;' or '?' for help.
Type 'quit;' or 'exit;' to quit.
    
[default@unknown]

单节的 cassandra,我们已经成功能安装好了。

Cassandra 的集群安装请参考:Cassandra 单集群实验 2 个节点

3. RCassandra 安装

3.1 文字说明部分:

R 语言的版本请使用 2.15.3,下面介绍如何安装 R。

首先,增加一个软件源 deb http://mirror.bjtu.edu.cn/cran/bin/linux/ubuntu precise/。

更新及指定安装 2.15.3-1precise0precise1 版本。

启动 R 程序,安装 RCassandra 包。

3.2 代码部分

测试环境 R 语言的版本是:2.15.3

安装 R 语言

~  sudo vi /etc/apt/sources.list
deb http://mirrors.163.com/ubuntu/ precise main universe restricted multiverse
deb-src http://mirrors.163.com/ubuntu/ precise main universe restricted multiverse
deb http://mirrors.163.com/ubuntu/ precise-security universe main multiverse restricted
deb-src http://mirrors.163.com/ubuntu/ precise-security universe main multiverse restricted
deb http://mirrors.163.com/ubuntu/ precise-updates universe main multiverse restricted
deb http://mirrors.163.com/ubuntu/ precise-proposed universe main multiverse restricted
deb-src http://mirrors.163.com/ubuntu/ precise-proposed universe main multiverse restricted
deb http://mirrors.163.com/ubuntu/ precise-backports universe main multiverse restricted
deb-src http://mirrors.163.com/ubuntu/ precise-backports universe main multiverse restricted
deb-src http://mirrors.163.com/ubuntu/ precise-updates universe main multiverse restricted
deb http://mirror.bjtu.edu.cn/cran/bin/linux/ubuntu precise/

更新 apt-get 源

~ sudo apt-get update
    
#声明安装2.15.3的版本
~ sudo apt-get install r-base-core=2.15.3-1precise0precise1
    
#启动R
~ R
R version 2.15.3 (2013-03-01) -- "Security Blanket"
Copyright (C) 2013 The R Foundation for Statistical Computing
ISBN 3-900051-07-0
Platform: x86_64-pc-linux-gnu (64-bit)
    
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
    
  Natural language support but running in an English locale
    
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
    
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

安装 RCassandra

install.packages('RCassandra')
library(RCassandra)

4. RCassandra 函数库

4.1 文字说明部分

列出有的 RCassandra 支持的函数,只有 17 个。记得 rredis 有 100 个函数,rmongodb 有 153 个函数。相比之下 RCassandra 太轻量了。

但是这 17 个函数,并没有覆盖 Cassandra 的所有操作,就连一些的基本的操作都没有函数支持,要在命令行处理。不知道是什么原因?!希望 RCassandra 能继续发展,完善没有实现的功能函数。

不支持的常用操作:

创建 keyspaces, 删除 keyspaces

创建列族,删除列族

删除一行

删除一行的某列数据

下面列出了这 17 个函数,并与 Cassandra 的命令做了对比说明。

4.2 代码部分

共有 17 个函数

RC.close               RC.insert
RC.cluster.name        RC.login
RC.connect             RC.mget.range
RC.consistency         RC.mutate
RC.describe.keyspace   RC.read.table
RC.describe.keyspaces  RC.use
RC.get                 RC.version
RC.get.range           RC.write.table
RC.get.range.slices

Cassandra 和 RCassandra 的基本操作对比:

#连接到集群
Cassandra: connect 192.168.1.200/9160;
RCassandra: conn<-RC.connect(host="192.168.1.200",port=9160)

#查看当前集群名字
Cassandra: show cluster name;
RCassandra: RC.cluster.name(conn)

#列出当前集群所有keyspaces
Cassandra: show keyspaces;
RCassandra: RC.describe.keyspaces(conn)

#查看DEMO的keyspace
Cassandra: show schema DEMO;
RCassandra: RC.describe.keyspace(conn,'DEMO')

#选择DEMO的keyspace
Cassandra: use DEMO;
RCassandra: RC.use(conn,'DEMO')

#设置一致性级别
Cassandra: consistencylevel as ONE;
RCassandra: RC.consistency(conn,level="one")

#插入数据
Cassandra:set Users[1][name] = scott;
RCassandra:RC.insert(conn,'Users','1', 'name', 'scott')

#插入数据框
Cassandra:NA
RCassandra:RC.write.table(conn, "Users", df)

#读取列族所有数据
Cassandra: list Users;
RCassandra: RC.read.table(conn,"Users")

#读取数据
Cassandra: get Users[1]['name'];
RCassandra:RC.get(conn,'Users','1', c('name'))

#退出连接
Cassandra: exit; quit;
RCassandra: RC.close(conn)

5. RCassandra 基本使用操作

5.1 文字说明部分

介绍 RCassandra 的基本函数操作,以 iris 的数据集为例,介绍了如何利用 RCassandra 操作 Cassandra 数据库。

5.2 代码部分

#安装RCassandra
install.packages('RCassandra')

#加载RCassandra类库
library(RCassandra)

#建立服务器连接
conn<-RC.connect(host="192.168.1.200")

#当前集群的名字(2个节点集群的名字)
RC.cluster.name(conn)
[1] "case1"

#当前协议的版本
RC.version(conn)
[1] "19.36.0"

#列出所有keyspaces配置信息
RC.describe.keyspaces(conn)

#列出叫的DEMO的keyspaces配置信息
RC.describe.keyspace(conn, "DEMO")

#RCassandra是不能创建的列族的,提前通过Cassandra命令创建一个列族
#[default@DEMO] create column family iris;

#插入iris数据
head(iris)
  Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1          5.1         3.5          1.4         0.2  setosa
2          4.9         3.0          1.4         0.2  setosa
3          4.7         3.2          1.3         0.2  setosa
4          4.6         3.1          1.5         0.2  setosa
5          5.0         3.6          1.4         0.2  setosa
6          5.4         3.9          1.7         0.4  setosa

#iris是一个data.frame
RC.write.table(conn, "iris", iris)

attr(,"class")
[1] "CassandraConnection"

#查看第1行,Sepal.Length列和Species的值
RC.get(conn, "iris", "1", c("Sepal.Length", "Species"))
           key  value           ts
1 Sepal.Length    5.1 1.372881e+15
2      Species setosa 1.372881e+15
#注:ts是时间戳

#查看第1行
RC.get.range(conn, "iris", "1")
           key  value           ts
1 Petal.Length    1.4 1.372881e+15
2  Petal.Width    0.2 1.372881e+15
3 Sepal.Length    5.1 1.372881e+15
4  Sepal.Width    3.5 1.372881e+15
5      Species setosa 1.372881e+15

#查看
r <- RC.get.range.slices(conn, "iris")
class(r)
[1] "list"

r[[1]]
           key  value           ts
1 Petal.Length    1.7 1.372881e+15
2  Petal.Width    0.4 1.372881e+15
3 Sepal.Length    5.4 1.372881e+15
4  Sepal.Width    3.9 1.372881e+15
5      Species setosa 1.372881e+15

rk <- RC.get.range.slices(conn, "iris", limit=0)
y <- RC.read.table(conn, "iris")
y <- y[order(as.integer(row.names(y))),]

head(y)
  Petal.Length Petal.Width Sepal.Length Sepal.Width Species
1          1.4         0.2          5.1         3.5  setosa
2          1.4         0.2          4.9         3.0  setosa
3          1.3         0.2          4.7         3.2  setosa
4          1.5         0.2          4.6         3.1  setosa
5          1.4         0.2          5.0         3.6  setosa
6              
```   

    

不支持的常用操作

  * 创建keyspaces,删除keyspaces
  * 创建列族,删除列族
  * 删除一行
  * 删除一行的某列数据

# 6. RCassandra使用案例

## 6.1 文字说明部分
  
通过一个业务需求的例子,加深我们对RCassandra的认识。下面是一个非常简单的业务场景。

业务需求:
  
1. 创建一个Users列族,包含name,password两列
  
2. 在已经数据的情况下,有动态增加一个新列age

## 6.2 代码部分
  
在Cassandra命令行,创建列族Users

```Cassandra    
[default@DEMO] create column family Users
...     with key_validation_class = 'UTF8Type'
...     and comparator = 'UTF8Type'
...     and default_validation_class = 'UTF8Type';
    
89a2fb75-f7d0-399e-b017-30a974b19f4a

RCassandra 插入数据,包含 name,password 两列

> df<-data.frame(name=c('a1','a2'),password=c('a1','a2')) 
> print(df)
  name password
1   a1       a1
2   a2       a2

#插入数据
> RC.write.table(conn, "Users", df)
attr(,"class")
[1] "CassandraConnection"

#查看数据
> RC.read.table(conn,"Users")
     name password
2    a2       a2
1    a1       a1

#新插入: 一行KEY=1234,并增加age列
> RC.insert(conn,'Users','1234', 'name', 'scott')
> RC.insert(conn,'Users','1234', 'password', 'tiger')
> RC.insert(conn,'Users','1234', 'age', '20')

#查看数据
> RC.read.table(conn,"Users")
     age  name password
1234  20 scott    tiger
2     NA    a2       a2
1     NA    a1       a1

#修改: KEY=1的行中,name=a11, age=12
> RC.insert(conn,'Users','1', 'name', 'a11')
> RC.insert(conn,'Users','1', 'age', '12')

#查看数据
> RC.read.table(conn,"Users")
     age  name password
1234  20 scott    tiger
2     NA    a2       a2
1     12   a11       a1

7. Cassandra 的没落

越来越多的基于 cassandra 构建的应用,开始向 hbase 迁移。

Cassandra 的没落,在技术上可能存在的一些原因:

  1. 读的性能太慢

    无中心的设计,造成读数据时通过逆熵做计算,性能损耗很大,甚至会严重影响服务器运作。

  2. 数据同步太慢(最终一致性延迟可能非常大)

    由于无中心设计,要靠各节点传递信息。相互发通知告知状态,如果副本集有多份,其中又出现节点有宕机的情况,那么做到数据的一致性,延迟可能非常大,效率也很低的。

  3. 用插入和更新代替查询,缺乏灵活性,所有查询都要求提前定义好。

    与大多数数据库为读优化不同,Cassandra 的写性能理论上是高于读性能的,因此非常适合流式的数据存储,尤其是写负载高于读负载的。与 HBase 比起来,它的随机访问性能要高很多,但不是很擅长区间扫描,因此可以作为 HBase 的即时查询缓存,由 HBase 进行批量的大数据处理,由 Cassandra 提供随机查询的接口

  4. 不支持直接接入 hadoop,不能实现 MapReduce。

    现在大数据的代名词就是 hadoop,做为海量数据的框架不支持 hadoop 及 MapReduce,就将被取代。除非 Cassandra 能够给出其他的定位,或者海量数据解决方案。DataStax 公司,正在用 Cassandra 重够 HDFS 的文件系统,不知道是否可以成功。

让我期待 Cassandra 未来的发展吧!

转载请注明:

/2013/07/r-nosql-cassandra/

发表 / 查看评论